Supervised Descent Method for Solving Nonlinear Least Squares Problems in Computer Vision
نویسندگان
چکیده
Many computer vision problems (e.g., camera calibration, image alignment, structure from motion) are solved with nonlinear optimization methods. It is generally accepted that second order descent methods are the most robust, fast, and reliable approaches for nonlinear optimization of a general smooth function. However, in the context of computer vision, second order descent methods have two main drawbacks: (1) the function might not be analytically differentiable and numerical approximations are impractical, and (2) the Hessian may be large and not positive definite. To address these issues, this paper proposes generic descent maps, which are average “descent directions” and rescaling factors learned in a supervised fashion. Using generic descent maps, we derive a practical algorithm Supervised Descent Method (SDM) for minimizing Nonlinear Least Squares (NLS) problems. During training, SDM learns a sequence of decent maps that minimize the NLS. In testing, SDM minimizes the NLS objective using the learned descent maps without computing the Jacobian or the Hessian. We prove the conditions under which the SDM is guaranteed to converge. We illustrate the effectiveness and accuracy of SDM in three computer vision problems: rigid image alignment, non-rigid image alignment, and 3D pose estimation. In particular, we show how SDM achieves state-of-the-art performance in the problem of facial feature detection. The code has been made available at www.humansensing.cs.cmu.edu/intraface.
منابع مشابه
Supervised Descent Method
In this dissertation, we focus on solving Nonlinear Least Squares problems using a supervised approach. In particular, we developed a Supervised Descent Method (SDM), performed thorough theoretical analysis, and demonstrated its effectiveness on optimizing analytic functions, and four other real-world applications: Inverse Kinematics, Rigid Tracking, Face Alignment (frontal and multi-view), and...
متن کاملSuperlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملUsing an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints
In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...
متن کاملECE 661 Computer Vision : HW 5 Dae
In the last homework, the DLT algorithm was used to find the homography which minimized an algebraic cost function. In this homework, we wish to find the homography H which minimizes the geometric cost function given by Equation 4.6 in the textbook (pg. 94) (1) where d() is Euclidean distance. Equation (1) can be rewritten as a nonlinear least squares problem with the form C(p) = X − F (p) 2 (2...
متن کاملA numerical approach for solving a nonlinear inverse diusion problem by Tikhonov regularization
In this paper, we propose an algorithm for numerical solving an inverse non-linear diusion problem. In additional, the least-squares method is adopted tond the solution. To regularize the resultant ill-conditioned linear system ofequations, we apply the Tikhonov regularization method to obtain the stablenumerical approximation to the solution. Some numerical experiments con-rm the utility of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1405.0601 شماره
صفحات -
تاریخ انتشار 2014